- uniformly convex norm
- равномерно выпуклая норма
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… … Wikipedia
Per Enflo — Born 1944 Stockholm, Sweden … Wikipedia
Endliche Präsentierbarkeit (Banachraum) — Die endliche Präsentierbarkeit ist ein mathematisches Konzept, das in der Untersuchung der Banachräume Anwendung findet. Die Grundidee besteht darin, einen Banachraum über die in ihm enthaltenen endlich dimensionalen Teilräume zu untersuchen.… … Deutsch Wikipedia
Prinzip der lokalen Reflexivität — Die endliche Präsentierbarkeit ist ein mathematisches Konzept, das in der Untersuchung der Banachräume Anwendung findet. Die Grundidee besteht darin, einen Banachraum über die in ihm enthaltenen endlich dimensionalen Teilräume zu untersuchen.… … Deutsch Wikipedia
Satz von Dvoretzky — Die endliche Präsentierbarkeit ist ein mathematisches Konzept, das in der Untersuchung der Banachräume Anwendung findet. Die Grundidee besteht darin, einen Banachraum über die in ihm enthaltenen endlich dimensionalen Teilräume zu untersuchen.… … Deutsch Wikipedia
Super-Reflexivität — Die endliche Präsentierbarkeit ist ein mathematisches Konzept, das in der Untersuchung der Banachräume Anwendung findet. Die Grundidee besteht darin, einen Banachraum über die in ihm enthaltenen endlich dimensionalen Teilräume zu untersuchen.… … Deutsch Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Konvexitätsmodul — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Satz von Clarkson — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Satz von Milman — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Satz von Milman-Pettis — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia